Из чего делают колеса для космоса
Космические программы различных стран предполагают не только полеты человека в космос и его высадку на ближайших к Земле планетах и спутниках, но и транспортировку разной исследовательской техники, чьей задачей является сбор данных об иных мирах. К таковым относятся не только спутники, но и различная колесная техника вроде автономных роверов, высаженных на Луне и Марсе. Но так как среда на этих планетах сильно отличается от земной, колеса для луноходов и марсоходов сделаны по-иному принципу. Рассказываем…
Высадка на Луну
По состоянию на сегодняшний день Луна является единственным астрономическим объектом, на котором побывал человек. Это достижение стало результатом миссии «Аполлона-11» – американского пилотируемого корабля, в ходе полета которого с 16 по 24 июля 1969 года жители Земли впервые в истории совершили посадку на поверхность другого небесного тела. Это сделали астронавты Нил Армстронг и Эдвин Олдрин, которые оставались на лунной поверхности 2 часа 31 минуту 40 секунд.
Предтечей события стала успешная посадка советской исследовательской автоматической межпланетной станции «Луна-2», а также беспилотный облет земного спутника автоматической межпланетной станцией «Луна-3», сумевшей сфотографировать обратную сторону планетоида.
В результате данных экспедиций было установлено, что атмосфера и гидросфера на Луне практически отсутствуют, а поверхность спутника представляет собой смесь тонкой мелкодисперсной пыли и скалистых обломков, называемых реголитом, которые образовались в результате столкновений метеоритов с лунной поверхностью. Подобные ударно-взрывные процессы способствовали взрыхлению и перемешиванию грунта, одновременно спекая и уплотняя его частицы. Толщина слоя реголита составляет до десятков метров.
На основе полученной информации Научно-производственное объединение имени Лавочкина разработало конструкцию первого в мире планетохода, который был успешно доставлен на поверхность земного спутника 17 сентября 1970 года. Аппарат под названием 8ЕЛ № 203, также известный как «Луноход-1», был предназначен для изучения особенностей лунной поверхности, радиоактивного и рентгеновского космического излучения на спутнике, химического состава и свойств его грунта. Он проработал 302 суток и проехал 10.540 метров, после чего связь с аппаратом прервалась.
В 1971-м автоматическая межпланетная станция «Луна-21» доставила на спутник Земли «Луноход-2». За четыре месяца работы он прошел 42 километра (это расстояние оставалось рекордным до 2015 года, когда его превзошел марсоход Opportunity), передал на Землю 86 панорам и около 80 тысяч кадров телесъемки, но его дальнейшей работе помешал перегрев аппаратуры внутри корпуса.
Колеса обоих аппаратов состояли из трех титановых ободов, покрытых сеткой из нержавеющей стали и соединенных грунтозацепами. При этом сами колеса работали независимо друг от друга и не соединялись мостами. Такая конструкция оправдывала себя и была разработана с учетом борьбы с непреодолимыми препятствиями: в случае столкновения с таковым неспособное дальше двигаться колесо просто отбрасывалось, а луноход продолжал свое движение. К слову, данная способность ни одному советскому луноходу так и не пригодилась.
Любопытно, что каждое колесо данной техники имело собственный автономный электродвигатель, энергию для которого вырабатывали бортовые источники – полониевый радиоизотопный тепловой генератор и солнечная батарея на внутренней стороне крышки лунохода. Разворачиваясь, крышка одновременно открывала радиатор, необходимый для охлаждения приборов в герметичном контейнере.
Лунный ровер
Во время успешных экспедиций «Аполлон-15», «Аполлон-16» и «Аполлон-17», предпринятых американцами, данный вездеход, называвшийся Lunar roving vehicle, или LRV, использовался для более развернутого исследования местности. Этот транспорт представлял собой четырехколесный планетоход на электротяге, рассчитанный на двух пассажиров. Сконструировал его Ференц, а генеральным подрядчиком выступила компания Boeing.
Этот лунный электромобиль весил 210 кг и мог в условиях силы тяжести земного спутника перевозить груз в 490 кг. Рама его шасси достигала в длину 3 метра (колесная база – 2,3 м) и была сварена из алюминиевых труб.
Американский луноход оснащался четырьмя тяговыми двигателями постоянного тока производства Delco (по одному на каждое колесо) мощностью 190 Вт при совершаемых оборотах до 10.000 в минуту. В роли источника электроэнергии выступали две серебряно-цинковые батареи напряжением 36 вольт и емкостью 121 А*ч каждая. К слову, ввиду примитивности технологии по сравнению с современностью эти батареи не заряжались. Зато конструкция предусматривала возможность питания от этих элементов устройства связи или телекамеры. Кроме того, батареи и вся электроника были подключены к системе пассивного охлаждения.
При таком оснащении средняя скорость LRV по лунным ландшафтам составляла 13 км/ч. Однако это не было пределом возможностей данной техники: в ходе экспедиции «Аполлон-16» был установлен рекорд скорости передвижения по Луне, составивший 18 км/ч. Сами участники экспедиции признали, что такая скорость оказалась чрезмерной для спутника с иной силой притяжения, ведь малейший наезд на препятствие сопровождался сильной тряской и взбиванием больших фонтанов лунной пыли.
Также отметим, что максимальное удаление LRV от лунного модуля из соображений безопасности ограничивалось ресурсами индивидуальных систем обеспечения астронавтов, которых должно было хватить для пешего возвращения к модулю в случае поломки луномобиля. В итоге максимальное расстоянии во время экспедиций «Аполлон-15» и «Аполлон-16», преодоленное этим транспортом, составило 28 и 27 км соответственно (в обе стороны). В ходе этих исследований и лунный автомобиль, и скафандры астронавтов показали свою надежность, так что данное ограничение было смягчено. Во время экспедиции «Аполлон-17» это позволило группе исследователей удалиться от лунного модуля на максимальное расстояние 7,6 км, а общая протяженность пути составила 36 км, что до сих пор является рекордом среди планетоходов, пилотируемых человеком.
Покрышки для космоса
Колеса луномобиля были разработаны компанией General Motors. В основе их конструкции применялся алюминиевый диск, на который устанавливалась своеобразная покрышка диаметром 810 мм и шириной 230 мм. Она была выполнена из плетеной стальной проволоки (волокон) толщиной 0,84 мм с цинковым покрытием. При этом около половины площади такой покрышки занимал специальный титановый протектор для обеспечения более надежного контакта с грунтом. Над колесами луномобиля также устанавливались пылевые щитки, которые неоднократно доказывали свою эффективность, не позволяя экипажу и органам управления техники покрыться за считаные минуты мелкодисперсной пылью.
Данная технология полностью оправдала себя, ведь использовать традиционный при изготовлении колес каучук за пределами нашей планеты возможностей не было. Температурные перепады на поверхности Луны составляют от -170°C до +120°C, а дополнительное высокоэнергетическое радиационное излучение еще больше ускоряет деградацию резиновых элементов. Словом, выдержать длительное использование вне условий Земли никакая резина не может.
Также лунный автомобиль был оборудован собственной системой радио- и телевизионной связи. На его борту имелась остронаправленная сетчатая параболическая антенна для прямой связи с Землёй, а также ненаправленная антенна. На борту были установлены цветная телекамера, 16-миллиметровая кинокамера, а также 70-миллиметровая фотокамера, для которых имелся запас пленок в кассетах.
Интересно: цветная телевизионная камера с 6-кратным объективом-трансфокатором, установленная на луномобиле, была оснащена электроприводом для поворота в горизонтальной и вертикальной плоскостях и изменения фокусного расстояния, благодаря чему ею могли управлять не только астронавты, но и оператор с Земли. Это значительно расширило возможности видеосъемок и даже позволило заснять старт лунного модуля с Луны. Для выполнения такой съемки луномобиль пришлось заранее оставить на спутнике в нужной позиции и на таком расстоянии от модуля, чтобы в поле зрения его телекамеры он попадал целиком.
Детали: для второго пришествия американцев на спутник Земли спроектирован луноход VIPER, цельнометаллические колеса которого успешно прошли все тесты на симуляторе имитации лунного грунта. Учеными моделировалось передвижение по разным склонам и камням, проскальзывание колес – всего было применено 196 различных сценариев. Луноход VIPER разработан Исследовательским центром Эймса и будет использоваться для поиска полезных ископаемых и водяного льда в затененных областях Южного полюса Луны. Его планируют доставить на поверхность спутника спускаемым модулем Griffin в конце 2023 года.
***
Вот такое получается занимательное материаловедение во внеземных условиях. Надеемся, вам было интересно. В следующем материале на эту тему мы расскажем об особенностях колес марсоходов.
16.04.2023